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One Consequence of

Poor Experimental Design

Bad mass spectrometry
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mathematical analysis
Over-interpretation of results

MECHANISMS OF DISEASE

Mechanisms of disease

(3 Use of proteomic patterns in serum to identify ovarian cancer

Emanuel F Retricoin Il Ak M Ardekani, Ben A Hitt, Peter J Lewine, ¥incent A Fusaro, Seth M Steinberg, Gordon B Mills,
Charies Simone, David A Fishman, Efise C Kohn, Lance A Liotta

Summary

Background New technologles for the detection of earty-
stage ovarlan cancer are urgently needsd. Pathologial
changes within an organ might be reflected In protsomic
pattems In serum. We developed a bloinformatics tool and
used It to Mentify proteomic psttems In serum that
distinguish neoplastic from non-neoplastic disease within
the ovary.

Metheds Proteomic Spectra were genersted by mass
spectroscopy (surfaceenhanced laser desorption and
lonisaticn). A preliminary “training" set of spectra derived
from analysls of serum from 50 unaffectsd women and
50 patients with ovarlan cancer were analysed by an
Iterative searching algorthm that Mentified & protsomic
pattem that completely discriminated cancer from non-
cancer. The discovered pattern was then used to classify
an Independent set of 116 masked serum samples: S0
from women with ovarian cancer, and 66 from unaffected
women or those with non-malignant disorders.

Findings The algorithm Identified a cluster pattern that, In
the tralning set, completely segregated cancer from norn-
cancer. The discriminatory pattem comectly Mentified all
50 ovarlan cancer cases In the masked set, Including all
18 stage | cases. Of the 66 cases of non-malignant
disease, 63 were recognised as not cancer. This result
yieked a sensitivity of 100% (95% Cl 23-100), specificity
of 95% (87-29), and positive predictive value of 94%
(84-29).

Interpretation These findings Justify & prospective
populstionbased assessment of proteomkc  pattem
technology s & screening tool for all stages of ovarian
cancer In highisk and general populations.

Lancet 2002; 369: 572-77
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Introduction

Application of new technologjes for detection of ovarian
cancer could have an important effect on public health,’
but to achieve this goal, specific and sensitive molecular
markers are essential.'* This need is especially urgent in
women who have a high risk of ovaran cancer due to
family or personal history of cancer, and for women with
a genetic predisposition to cancer due to abnommalities
in predispesition genes such as BRCAJ and BRCA2.
There are no effective screening options for this
population.

Ovarian cancer presents at a late clinical stage in more
than 80% of patients,” and is associated with a 5-year
survival of 35% in this population. By contrast, the 5-
year survi for patients with stage I ovarian cancer
exceeds 90%, and most patients are cured of their
disease by surgery alone.'* Therefore, increasing the
number of women diagnosed with stage I disease should
have a direct effect on the mornality and economics of
this cancer without the need to change surgical or
chemotherapeutic approaches.

Cancer antigen 125 (CA125) is the most widely
used biomarker for ovaran cancer.** Although
concentrations of CA125 are abnormal in about 80% of
patients with advanced-stage disease, they are increased
in only 50-60% of patients with stage I ovarian cancer.'*
CA125 has a positive predictive value of less than 10%

ingle marker, but the addition of ultrasound
screening to CA125 measurement has improved the
positive predictive value to about 20%

Low-molecular-weight serum protein profiling might
reflect the pathological state of organs and aid in
the early detection of cancer. Matrix-assisted laser
desorption and jonisation time-of-flight (MALDLTOF)
and surface-enhanced laser desorption and ionisation
time-of-flight (SELDI-TOF) mass spectroscopy can profile

in this range.** Thess profiles can contain
ds of data points, necessitating sophisticated
analytical tools. Bioinformatics has been used to study
physiological outcomes and cluster gene microarrays,™**
but to uncover changes in complex mass spectrum
pattems of serum proteins, higher order analysis is
required. We aimed to link SELDI-TOF spectral
analysis with a high-order analytical approach using
samples from women with a known diagnosis to define
an optimum discriminatory PROTEOMIC PATTERN. We
then simed to use this pattem to predict the identity of
masked samples from unaffected women, women with
early-stage and late-stage ovarian cancer, and women
with benign disorders.

Participants and methods

Study population

100 control samples (50 for the preliminary analysis
and 50 for the masked analysis) were provided from
the National Ovarian Cancer Early Detection Program
(NOCEDP) clinic at Northwestern University

THE LANCET * Vol 3%9 * February 16, 2002 * www.thelancet.com
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Chromatograph
(yeast lysate)
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Shotgun Proteomics

Digest proteins to peptides

Separate peptides (Cation * C-18 LC)
|dentify peptides (from CID fragments)
Infer proteins

Hundreds of IDed peptides
— bad news: differ run-to-run
— good news: great for QA/QC!



[/ Labs, yeast, simple SOP
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CPTAC Study 2*
3 Major Plasma Proteins

Unique Peptide Sequences
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Characterizing the Variability

A new suite of programs can be used An attempt to standardize ESI
to look at the varibility in LC MS/MS conditions is being made with

data: the use of ‘Thermometer lons’
by John Peltier and colleagues:

NISTMSQC1

Defining Instrument Performance and

Contact Assessing the Reproducibility of Mass
ontac Spectrometric Analyses of Complex

: : les - TPM 371
Paul Rudnick or Steve Stein Samples S

At NIST
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Approach for Analysis of ABRF Sample

Sample Preparation for MS/MS Analysis

Dissolve sample in 0.1% SDS/0.1 M AmHCO;
Reduce & alkylate Cys with iodoacetamide
Bring up in SDS/PAGE sample buffer,

separate on gel, and stain.

Cut out bands & digest with trypsin O/N.
Extract peptides.
MS/MS Analysis
|

LC/MS/IMS  Off-line cap. RP HPLC
(lon-trap)

R
e~
—
—
-—

MALDI MS/MS
(TOF_TOF) Sample MW e

Lane Markeks 24, 2009




Summary of Protein ldentification Results
SMSM, NICHD

 Number of Proteins “ldentified”
— 36 from sample (73% of 49 proteins in sample)
— 4 contaminants
— 0 Incorrect (false positive)

» > 4 peptides/protein found for 34/36 proteins




Protein Identification
Performance for 74 Labs

Proteomics Standards
Research Group
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Where does this take us?

Perhaps -
We need to recognize that mass spectrometers need
to be used to collect mass spectra -

and NOT simply to generate
“ldentifications”
“‘Biomarkers”
efc.

Mass
pectrometer Spectrometer
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Why Worry About These Issues?

In generating complex spectra from
different sources -

how do you tell if they are similar or
different?

* How does one go about comparing
different complex spectra? (Other
than by holding them up to a
window?)

» How does one identify the most
reproducible features of spectra
when multiple (discordant)
replicates are available?

 We need an automated and robust
method to compare replicates
and differentiate spectra from a
various sources.

FCRC
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General Method for Applications

Produce multiple replicates of a MALDI spectrum

Generate a Consensus Spectrum from the overall
mean

Use the to
eliminate poor replicates

Compare Consensus Spectra from different samples
and assess similarity using the DP and CI.

FCRC
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What IS the Dot Product?

- In Euclidian space, the dot
product of 2 vectors is given
by:

A . B =|A||B|cos 6

where 0 is the angle between
the vectors.

- Since the cosine of 0 = 1, the
closer 2 vectors are to being
parallel or overlapping, the
closer their dot product is to 1.

FCRC
February 24, 2009
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Typical Reflector Spectrum
of
Rat Brain Tubulin
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Tubulin Post-translational Modifications
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Why Study Tubulins?
What Are They?

Tubulins are ~50 kDa proteins
that polymerize into microtubules
and are involved with:

-Intracellular transport
-Ciliary function

- Mitosis

February 24, 2009




Determination of C-termini

CNBr cleavage (cuts on C-term of Met)

Negative ion reflector spectra were obtained using an ABI 4800
TOF-TOF

Each sample was spotted in triplicate and 10 replicate spectra,
1000 shots each, were obtained from each spot.

All spectra were calibrated externally using ChET

FCRC
February 24, 2009




Nature of the Problem - Example 1

Replicate Spectra from Rat Brain Tubulin
All intensities normalized

II |M|I|| |

4000

i imi FCRC
Other 24 replicates very similar to these ~_  rere




Nature of the Problem - Example 1

Replicate Spectra from Bovine Testicular Tubulin
All intensities normalized
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Sample Number

- Only 5 replicates correlated with the consensus spectrum
- Generating Consensus from only the 5 correlating spectra
allowed for increased # peaks in the consensus, and much
tighter confidence intervals between replicates and consensus
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Nature of the Problem - Example 2

Replicate Spectra of Tubulins from Different Sources -
Similar or Different?
All intensities normalized

Rat Brain : :’/' Bovine Brain

BovineTesticle

February 24, 2009




Nature of the Problem - Example 2
Replicate Spectra of Tubulins from Different Sources -

Similar or Different?

BBT BTT
645 (.460-.776) 230 (-.368-.693)

187 (-.465-.708)

BBT - Bovine Brain

BTT - Bovine Testicle
RBT - Rat Brain
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Precursor Fragmentation
for
de Novo Sequencing
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Replicate Fragmentation Spectra
m/z 1570 - GluFib Peptide

0
100 400 700 1000 1300 1600 400 700 1000 1300 1600
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De Novo Sequencing of m/z 1570 Peptide

Generating the Consensus Spectrum

DP vs Cl vs
Consensus Consensus

GluFib replicate 1 0.43 -0.11-0.77
GluFib replicate 2 0.88 0.69 - 0.96
GluFib replicate 3 0.79 0.42-0.94
GluFib replcate 4 0.88 0.70 - 0.96
GluFib replicate 5 0.85 0.57 - 0.95
GluFib replicate 6 0.89 0.72 - 0.96

Spectrum

FCRC
February 24, 2009




Evaluating Mass Spectral Similarity and Reproducibility:
Does this work?

De Novo Sequencing

Spectrum Sequence: EGVNDNEEGFFSAR
GluFib Consensus E(GNV)DNEEGFFSAR

FCRC
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Four BSA Peptides
Consensus Sequencing de Novo

Peptide

Well 1

Well 2

Well 3

18 Reps

YLYEIAR
(m/z 927)

YXYEXAR
62%
(5/6 Reps)

YXYEXAR
57%
(6/6 Reps)

YXYEXAR
61%
(6/6 Reps)

YXYEXAR
64%

LGEYGFQNALIVR
(m/z 1479)

XGEYGFKNAXXVR
85%
(2/6 Reps)

XGEYGFKNAXXVR
82%
(4/6 Reps)

(GX)EYGFKNAXXVR
82%
(1/6 Reps)

XGEYGFKNAXXVR
84%

DAFLGSFLYEYSR
(m/z 1567)

D(AF)XGSFXYEYSR
76%
(4/6 Reps)

DAFXGSFXYE R
77%
(1/6 reps correct)

DAFXGSFXYEYSR
82%
(3/6 Reps)

DAFXGSFXYEYSR
80%

KVPQVSTPTLVEVSR
(m/z 1639)

KVPKVST(PT)XVEVSR
77%
(3/6 Reps)

KVPKVST(PT)XVEVSR
77%
(1/6 Reps)

No hits
(1/6 Reps)

KVPKVST(PT)XVEVSR
82%

FCRC
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Can We Extend This Concept
To Be More
Generally Useful?




QT Clustering

A “greedy” algorithm from genomics designed to form clusters
of genes with each cluster having a minimum level of quality

« Algorithm looks through a list of genes and finds those with the
greatest similarity to some initial choice, and keeps hunting until
no further matches within the quality threshold can be found.

* Process continues for all genes to form a set of candidate
clusters.

» The best cluster, with at least the minimum number of pre-selected
components is chosen and its components removed from the list
and the process begins again.

» The process continues until all possible clusters are formed.

FCRC
February 24, 2009




QT Clustering Applied to Linear MALDI

Spectra

b

y

udll,

e

0 1 1 1 | 1 1 1 | 1 1 1
2500 2900 3300 3700 4100 4500 4900
miz

Linear RBT
— RefflRBT ]
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Results of QT Clustering

2502.816 3,3,3,4,3,3,3,3

2513.131 7,5,4,7,4,4,6,5,6,6,4,6,4,7,6,4,6,7,7,3,4

2521.893 3,3,3,3

2529.892 19,21,19,19,19,9,15,19,20,17,18,16,15,17,17,13,15,15,15,16,16,13

2540.277 10,10,10,10,10,13,9,10,6,10,10,9,9,11,8,10,9,9,7,8,8

2569.046 18,18,13,16,18,19,20,18,15,12,19,15,17,15,16,14,14,13,17,14,13,8

2585.349 5,5,6

2586.403 4,5,4,4,4,6,6,6,5,3,4,6,3,8

2604.466 150,70,137,120,112,97,97,90,98,95,141,91,108,103,137,131,83,110,106,124,92,117

2621.487 7,8,8,10,11,10,6,7,7,9,4,9,9,6,7,6,6,6,6

2622.037 7,6,6

2634.802 6,10,6,8,7,8,12,7,7,9,6,6,8,13,14

2635.880 16,14,15,13,14,13,14

2641.270 54,4,4,4,3,4,6,5

2658.596 4,4,3,3

2659.226 4444343444
L10-Gel 1_1 0.874
L10-Gel 1_10 0.882
L10-Gel 1_11 0.873
L10-Gel 1_2 0.938
L10-Gel 1_3 0.929
L10-Gel 1_4 0.933
L10-Gel 1_5 0.936
L10-Gel 1_6 0.940
L10-Gel 1_7 0.936
L10-Gel 1_8 0.922
L10-Gel 1_9 0.913
L11-Gel 1_1 0.874
L11-Gel 1_10 0.936
L11-Gel 1_11 0.843
L11-Gel 1_2 0.887
L11-Gel 1_3 0.868
L11-Gel 1_4 0.908
L11-Gel 1_5 0.935
L11-Gel 1_6 0.933
L11-Gel 1_7 0.942
L11-Gel 1_8 0.932

L11-Gel 1_9 ©
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3537.63
3538.260
3551.63
3552.356
3568.633
3598.231
3609.07
3609.95
3625.39
3651.841
3652.665
3666.08
3667.449
3698.781
3727.06
3730.27
3738.69
3791.753
3793.446
3856.311
3859.14
3868.44
3968.376
3985.746
3987.95
3996.78
4116.243
4117.24
4119.236
4119.792
4123.702

0.73

0.66

Allowing Us to See
High Levels of Glutamylation

0.29
0.29
0.19
0.17
0.28
1.95
2.93
2.34
0.33
0.14
0.12
0.14
0.12
0.11
4.21
6.58
1.52
0.14
0.12
2.30
3.85
0.72
0.12
0.68
1.32
0.21
0.24
0.19
0.75
0.47
0.30

RBT a4 cterm + 7E

RBT b2 1 MC glob 268 - 299

bd4a cterm + 1E
bd4a cterm + 1E
RBT b5 cterm + 2E

RBT a4 cterm + 8E

RBT b5 glob 331 - 363, b4a glob 331 - 363, RBT b2 glob 331 - 363
RBT K-a1 cterm - Y + 8E
bd4a cterm + 2E

RBT K-a1 cterm - Y + 9E
b4a cterm + 3E

RBT K-a1 cterm - Y + 10E

bda cterm + 4E

RBT K-a1 cterm-Y + 11E

FCRC
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Summary

A Consensus Spectrum from complex spectra
— Allows one to account for variance
—  Permits comparison of spectra from different sources

Use of the Dot Product

— Allows use of Pearson’s Correlation Coeff
(For Normalized, Mean Centered Spectra)

The combination can be used in MS and MS/MS

FCRC
February 24, 2009




Future Directions

If we look at the “quality”
of hits in a DB search of
LC-MS/MS spectra (.dta files) -

Will the quality improve by
using consensus spectra
VS
the each of the replicates?

FCRC
February 24, 2009
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